
Spring Layout
Reference Guide

Sponsored By:

Document Authors: Matthew Tomlinson, Rob Monie

Document Version: 0.5

Spring Layout Version: 0.7.3

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Table of Contents
Introduction..4

Overview..4
Architecture..4
Getting Started...5

Configuring Layout Resources..5
Using the LayoutResources servlet..5
Managing Layout Resources Manually...6
Referencing Layout Resources in html files..6

Spring Layout Controllers..7
Single Page Forms ...7

AbstractBaseFormController...8
Method delegation...8
Convenience Javascript Method for method delegation...8
Default Property Editor Registration..8
Localised Messages..9

Saving Messages for Display..9
Messages and Redirects...9

Page Modes..10
Page Access Resolvers...10
Specifying Read Only Fields...11
Controller Configuration Reference...11
Multi Page Forms..12

MultiPanelFormController...12
Multi-page Form State Management..12
Form Page Navigation..13
Validation...13

Validation Mode..14
Displaying all Form Pages at Once...15

Controller Configuration Reference...15
Controller Lifecycle..16

Security..20
Page Access Resolvers...20

Implementing a PageAccessResolver..21
Configuration...21
Page Level Security...22
Field Level Security...23
Function Permissions..24
PageAccessHolder..24

JSP Tags...25
Form and Field Layout Configuration..26

LayoutForm Attributes...27
LayoutField Attributes..27
Default Field Attribute..28
Panel Forms / Form Groups..28

LayoutPanelForm Attributes..29
Validation Configuration...29

Simple Mandatory Field Validation..29
Conditional Mandatory Field Validation...30

Validating Against Multiple Mandatory Conditions..30
Cross Panel Validation Dependencies ...31

Raising Errors on Alternate Fields..31
PathBasedCondition attributes...32
Validation Rules..32
Writing Custom Validation Rules..33

JSP Tags..34
Form and Field Tags..34

Field Tags..34
Form Tags ..36

Panel Tab & Footer Renderers...36
Security Tags...37
Other Tags...37

User Interface Behaviour...38
Overriding the Default Look and Feel..39
Javascript Reference...40

Introduction

Overview
Spring Layout is an Open Source Spring MVC extension that simplifies the development of data-
centric web applications. It is designed to service a number of common requirements of web
applications enabling the rapid development of form based web applications. This is achieved
through the following set of features:

● JSP Tag framework with integrated declarative client & server-side validation

● Enables the use of a single JSP for edit / read modes

● Pluggable security with page and form field level granularity

● Rich multi-page / wizard form framework

● Editable Data Grid

Architecture

Spring Layout consists of a number of key components including:

● Controller Extensions – Extend the core Spring MVC Controllers providing specific Spring
Layout functionality.

● Security Framework – Optionally used by most components within the framework for
authorisation at the page and field level. The security framework deals specifically with
authorization concerns and should be used in conjunction with a third party authentication
framework. Acegi Security is a very popular and highly recommended choice.

● JSP Tag Library – Provides rich form tags with built in security and validation capabilities.

● Form & Field Definitions – Configuration of layout for forms and fields for referencing by
JSPs.

● Validation Framework – Provides rich declarative validation rules via field definitions.
Easily Extended for specific business validation requirements.

● Layout Resources – Javascript, CSS and images allowing rich front end behaviours and
formatting based around validation, and user interaction.

Getting Started
To get started using Spring Layout there are some general configuration requirements and options.

Configuring Layout Resources
Spring Layout comes with a comprehensive Javascript library and style sheets that must be
imported into JSP pages. This can be done in either of two ways:

Using the LayoutResources servlet

The Spring Layout jar contains all layout resources and dependencies including Javascript, CSS
and images. The simplest way to configure Spring Layout is to map the Layout Resources servlet
in web.xml. This method ensures an easy upgrade and simple configuration. You will always have
layout resources compatible with the jar file in your project.

To configure the Layout Resources servlet, add the following to your web.xml file.

<servlet>
 <servlet-name>layoutResourceServlet</servlet-name>
 <servlet-class>net.sf.springlayout.web.layout.servlet.LayoutResourcesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>layoutResourceServlet</servlet-name>
 <url-pattern>/layoutResources/*</url-pattern>

Illustration 1: Overall Spring Layout Architecture

</servlet-mapping>

Using this configuration, the Layout Resources servlet will serve up all JS, CSS and image files
from within the Spring Layout jar.

While this method is the simplest, it may be desirable to manage these files manually within your
project. One reason for doing this might be to manage the javascript libraries that Spring Layout
depends on such as prototype and behaviour.js. Obviously there might be compatibility issues
with using different versions of these libraries so we don't recommend it.

It should be noted that it is possible to extend and override the CSS supplied by Spring Layout.
This is detailed in the “Overriding the default Look and Feel” chapter.

Managing Layout Resources Manually

To enable the manual management of the Layout Resources files firstly extract the
layoutResources folder from the Spring Layout jar using Winrar or another archive management
tool.

This folder should be placed under your projects “WebRoot” folder or equivalent depending on
your project structure. Ultimately it should be placed in such a location that it can be referenced
via the path /[app root]/layoutResources/.

Remember that now whenever you upgrade Spring Layout, you must repeat this process. If you
modified or replaced any files here you must now manage this in upgrades.

Referencing Layout Resources in JSPs or HTML files

To simplify referencing all the Spring Layout dependencies, a single JSP tag can be used in the
html <head> element.

Use of this tag in it's most simple form is shown in the following example:

<head>
<layout:config />
...

</head>

The result of this is to output all the relevant js and css imports and setup some Javascript
variables.

Any Javascript and CSS specific to the page should be placed after this tag. This is especially
important for any CSS that overrides Spring Layout defaults as CSS overrides existing style
declarations as it renders.

Displaying Loading Message

The layout:config tag provides an attribute called “showLoadingMessage” that can be used to turn

on or off a loading message displayed to users when a page is being refreshed or submitted.
While providing feedback to the user that something is happening, it has the added benefit of
preventing any clicking on the page. This is a great way to prevent double posting of forms.

Further details of the <layout:config /> tag can be found in the Tag Reference.

Spring Layout Controllers
Being a web application framework the Spring Layout controllers are the centre of the Spring
layout extensions and provide the underlying lifecycle for most aspects of the framework including:

● data binding

● validation

● security

● page flow

The Spring Layout controllers extend the base Spring form controller hierarchy to support two page
or form types.

● Single page forms

● Multi-page forms for a tabbed or wizard style form

The intended use of these controllers in an application follows what would generally be considered
to be best practices for controllers in a Spring application so previous experience in using Spring
MVC would be advantageous to understanding Spring Layout.

Single Page Forms
Data centric web applications most commonly use a single form per transaction model where a
html form is presented showing existing data for reading or editing or providing the ability to add
new data. Commonly this data would be submitted to a servlet or in Spring's case a controller,
validated against business rules before being bound to a model object graph and saved to a

Figure 1: Controller Hierarchy

database. Springs core Dispatcher Servlet and Controller framework handles this elegantly and
provides an excellent base for extension.

AbstractBaseFormController

At the top of the Spring Layout Controller hierarchy is AbstractBaseFormController. This controller
provides all the functionality for a single page controller and the common base functionality for
multi page controllers.

Method delegation
Method delegation is a concept used commonly in MVC style frameworks where a controller
method can be identified through a request parameter and called automatically using Java
reflection. This approach allows multiple functions for a page such as save, delete etc to be rolled
into a single controller reducing the number of controllers required and consequently reducing
configuration. Spring layout uses the request parameter “method” to specify the name of the
controller method to call. A controller can contain either one or two methods with the name
specified in the “method” parameter with either of two method signatures depending on what point
of the controller lifecycle they should be called.

The first method signature that is potentially called occurs pre-binding enabling data manipulation
to be achieved that is not practical to do using regular property editors.

public void methodName(HttpServletRequest request,
Object command,
BindException errors) throws Exception

The second method signature is called after binding and validation has taken place by an overridden
SimpleFormController.onSubmit method

public ModelAndView methodName(HttpServletRequest request,
HttpServletResponse response,
Object command,

 BindException errors) throws Exception

Convenience Javascript Method for method delegation
As a convenience a Javascript method exists for transparently adding the 'method' parameter and
it's value and submitting the current form. This exists in layout.js and contains the following
method signature:

function performAction(formName, action, unpositioned)

Editing the Command Object before binding
At times some manipulation of the command object may be required prior to binding and invoking
property editors. On these occasions this can be achieved by overriding the following controller
method.

protected void editCommandBeforeBind(HttpServletRequest request, Object command)

Default Property Editor Registration
A default behaviour of Spring is to register default property editors for numeric values to raise an
error on binding when the value is null. While we have never found this to be a desirable default
behaviour, rather than changing this without warning, Spring Layout allows a controller level
switching of this via the controller property defaultPropertyEditorsAllowEmpty.

<property name="defaultPropertyEditorsAllowEmpty" value="true" />

Using this configuration in each controller or an abstract parent controller will register all numeric
property editors so that they do not raise a binding error when they encounter a null value.

Localised Messages
Simplified localised message retrieval is available from within the controller via the provided
getMessage methods. Properties files for messages are setup through the regular
MessageSource configuration similar to the following configuration:

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource">

<property name="basenames">
<list>

<value>messages</value>
<value>labels</value>

</list>
</property>
<property name="useCodeAsDefaultMessage" value="true" />

</bean>

Saving Messages for Display

A basic convenience method is supplied for saving messages into the request under known
request attribute (WebConstants.MESSAGES)

protected void saveMessages(Messages messages, HttpServletRequest request)

A simple Messages class exists that is useful for grouping a list of messages with a title. This
resides at net.sf.springlayout.web.message.Messages and may be useful in some situations rather

than using a List object.

Messages and Redirects

Due to the well known issues around back buttons / page refreshes and using server side
forwards, we strongly encourage the use of redirects following the successful execution of a POST.
The implication of this is that anything added to the request will be lost following the redirect. The
solution to this provided by Spring Layout is to configure a Messages Interceptor. The
MessagesInterceptor is responsible for temporarily storing any request attribute stored in the
request into the session and then moving them back into the request on the GET following the
redirect.

The following configuration is an example of how the publicUrlMapping bean can be used with a
messages interceptor to intercept all controller invocations:

<bean id="messagesInterceptor" class="net.sf.springlayout.web.interceptor.MessagesInterceptor"
/>

<bean id="publicUrlMapping"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="interceptors">
 <list>
 <ref local="messagesInterceptor" />
 </list>

</property>
...

</bean>

For single page forms it is still practical to use a forward after validation failure or any other error
that requires the current form to be returned to the user with error messages. For this reason there
is no errors equivalent to the MessagesInterceptor. Errors should be handled in a typical Spring
fashion using the errors object and it's methods.

Page Modes
One benefit of using Spring Layout is the ability to open a page in read or edit mode. How a page
is opened can be set in two ways. Firstly a default setting for a controller can be specified in the
controller configuration using the property defaultEditMode. Setting this to true will open the page
in edit mode. Setting it to false (the default) will open a page in read mode.

Alternatively, or in combination with this configuration, the url can be used to open a page in read
or edit mode. Appending the parameter e=1, will open the page in edit mode whereas e=0, will
open the page in read mode. Specifying the mode in the url will always override the default.

Used in combination with Page Access Resolvers which is touched on in the next section and
detailed in the security chapter, page modes can be requested and either granted or downgraded
to the user's maximum access level.

For example, consider a user registration system users are only allowed to edit their own profile
but can view other's profiles. If a user appends e=1 to the url of another user's profile, they will
only be granted read access.

Page Access Resolvers
Spring layout provides a flexible security authorization layer which is primarily based around but
not limited to the Controller Command Object. This layer of security can be combined with any
authentication strategy such as Acegi Security and comes in the form of PageAccessResolvers.
Page Access Resolvers are optionally injected into Spring Layout Controllers and enable record
and field level security to be applied to a controller and it's associated page. The specifics of
implementing Page Access Resolvers are covered in detail in the Security Chapter.

Once a Page Access Resolver has been written it can be injected into a controller in the following
manner:

<bean id="userPageAccessResolver"
class="net.sf.springlayout.sampleapp.web.security.UserPageAccessResolver" />

<bean id="userController" parent="abstractItrackController"
class="net.sf.springlayout.sampleapp.web.controller.UserController" >

<property name="pageAccessResolver">
<ref bean="userPageAccessResolver" />

</property>

...

</bean>

The Page Access Resolver will be called at the appropriate time in the controller lifecycle and it's
effects on the security of the current request applied.

Specifying Read Only Fields in the Controlle
It would usually be desirable to programatically configure specific fields as read only using a Page
Access Resolver in order to keep all security concerns in a central location. It is possible however
for simple cases where a Page Access Resolver might not be required, to configure read only
fields in the controller itself. This can be achieved by overriding the following controller method
and returning a List of strings representing the field path to be treated as read only:

public List defineReadOnlyFields(HttpServletRequest request)

Controller Configuration Reference
The following table details all Spring Layout settable properties for controllers that extend
AbstractBaseFormController:

Attribute Description

form Reference to the Form Spring bean used to configure rules relating
to validation and layout for fields on the page.

defaultEditMode true / false. Determines whether the page should open in edit or

read mode by default if not specified in the url

defaultProperty-
EditorsAllowEmpty

True / false. If set to true will register all default property editors to
allow empty values to be seen as null and valid. Default Spring
behaviour will see a null value for an integer as a binding error.

pageAccessResolver Reference to an optional PageAccessResolver used for determining
a user’s access to the current page, its fields and functions within it.

redirectFormView The name of the view (defined in views.properties or equivalent) that
redirects to the current controller. This is required so that a redirect
can be used after all form submission / binding.

formView The name of the view used to render the current page. Used by
showForm as in core SpringMVC.

commandName Name by which to store and reference the command object.

Key: Shaded cells indicate properties important to Spring Layout but part of the core Spring MVC
framework

Multi Page Forms
Applications that are required to gather large sets of data in a single transaction or use a wizard
styled approach for gathering data may require forms that span multiple pages. This method of
data gathering and editing presents a set of problems that are not a consideration for single page
forms. Spring Layout provides a framework to solve many of the complexities of multi-page or
wizard style forms development.

Spring Layout allows for the use of different controllers for different pages within the multi-page
form. This allows for far greater flexibility than using a single controller but also introduces it's own
set of problems that need to be handled.

MultiPanelFormController

The MultiPanelFormController should be used for any controller that is intended to be part of a
multi-page form group. The MultiPanelFormController controller extends
AbstractBaseFormController so all of the common functionality is inherited while a number of
features specific to a multi-page form are added. Individual controllers that work together in a
multi-page environment do not need to be made explicitly aware of each other at the controller
level but are tied together by configuration in the PanelForms and PanelFormGroup to which they
belong. This configuration is detailed in the LayoutConfiguration Section .

Multi-page Form State Management

As with a single page form, multi page form requires a single command object to hold the object
graph for editing. This object graph may be as complex as your business logic requires but
ultimately a single object graph is viewed / edited and potentially updated. To store the changes a
user makes to the object graph as they edit and navigate between pages, binding of form data
against the command object needs to take place but not be persisted to the database until a user
explicitly saves the form. Spring Layout does not handle this directly but puts the responsibility in
the hands of the developer. We can however offer our experience and suggest a strategy that
may work for you and also warn of any complexities that may be encountered.

We've found the easiest way to handle this is to store the command object in the session. This
seems like a pretty obvious solution but it can have it's problems when combined with ORM tools

such as Hibernate. We found it impractical to work with lazily loaded object graphs when the
command object is stored in the session if using a Hibernate Session per Request strategy such
as the OpenSessionInViewFilter. This is the case without reattaching the command object to the
hibernate session on every request which can present problems. This method therefore requires
the entire object graph that could be worked on to be fetched when the initial load of the top level
object is performed and the object to remain in a detached state until a save is performed.

Obviously this approach is not feasible for all data models,so it may be necessary to employ a
different approach such as using Long Hibernate Sessions that span multiple http requests.

It is not within the scope of this document to discuss Hibernate or other ORM strategies in detail
but rather we thought it useful to highlight the potential problems in using multi-page forms.

Form Page Navigation

Navigating between pages works differently depending on whether the user is in read or edit
mode. When in read mode, it is as simple as providing links to the specific controller. When in edit
mode things are different because any changes made to the form need to be bound to the
command object backing the page before navigating to the target form page. As part of the Spring
Layout JSP Tag library a default panel (page) tab renderer is supplied to output and format tabs for
moving between pages in read and edit mode. These are detailed in the JSP / LayoutForm
section.

From a controller perspective the main thing to be aware of is the controller method for navigating
between pages.

public ModelAndView changePanel(HttpServletRequest request,
HttpServletResponse response,
Object command,
BindException errors) throws Exception

This controller method is used for changing panels when a form is in edit mode. It checks the
request for the WebConstants.TARGET_PANEL_PARAM parameter, binds the current form data
to the command object and redirects the browser to the target page.

Validation

Multi-page controllers have increased complexity in validation due to the fact that they need to
validate not only the current page but all pages within the Panel Form Group. When the validate
method is called on the panelForm group from the controller lifecycle as shown below, the
validation rules for each page need to be executed in order to validate the entire form. Due to
potential differences in the command objects between controllers within a multi-page form group,
such as adapted or wrapped / nested command objects , the validation for each page calls upon
the getCommandObject method for the page's controller to resolve the object as it is used on that
page.

More often than not, each page within a panel form group will return identical command objects but
in the case of an adapted or wrapped object this may be necessary.

A simple and fairly trivial example of a user registration form is as follows. Note that it's unlikely

we'd implement this use case in this fashion but it serves to illustrate the point.

Page one of the form collects the user's personal details such as name and address. The
command object for this form is the user object so the paths to form fields against the command
object could be something like the following.

user.firstName

user.lastName

user.streetAddress1

... and so on.

On page two of the form you want to capture the login details including the username and the
user's password. Part of this process is to add a password confirmation field which is not part of
the model but to make use of validation rules and Spring binding you decide to nest this command
object under a form object which contains the User and passwordConfirm properties. This
wrapping or nesting of the mode in the command object is performed by the controller for form
page two. Subsequently the path to the fields on this form are a level deeper:

userForm.user.userName

userForm.user.password

userForm.passwordConfirm

Having two different objects as the command object would present a problem here if the user
object was used to validate all form pages. However, the validation object asks each controller to
serve up it's specific command object so the object graph for each page reflects the actual paths
through the object graph used in the form field definitions and their validation rules.

The capabilities and configuration of Spring Layout validation is documented in greater detail in the
validation chapter.

Validation Mode

Multi-page forms require some special behaviour when it comes to page validation. As form data
is effectively submitted when navigating between form pages, it is necessary to differentiate
between a form submission that requires validation such as a save, and form submission that is
simply part of navigation. On top of this there are also situations when navigating between pages
require validation.

For example, if on a two page form a user submits the form causing validation failures on both
form pages. The user is returned to the current form with errors highlighted to be fixed. They are
also shown through highlighting of the inactive form page that there are errors on that page. The
user fixes all the validation failure on the current form and then clicks on the 'tab' to go to the
second form page. At this point, the validation is still required so that when the next page opens it
still shows the errors for that page.

To handle this, a special validation mode exists. Setting of the validation mode is simple and can
be achieved through setting the hidden form field validateMode. The validateMode field is rendered
for every form by the Spring Layout form tags and is used to transport the validation mode
between requests. Turning the validation mode on or off is as simple as setting this field to '1' or
'0'.

For example, on saving of a form, validation is required. The following Javascript could be used to
firstly set the field and secondly submit the form to the controller calling the save method:

function saveUser(formName)
{

setFieldValue("validateMode", "1");
performAction(formName, "saveUser");

}

The two javascript functions shown here are part of the Spring Layout Javascript Library and are
fairly self explanatory by name. More details about these can be found in the Javascript chapter.
The point to notice here is that the field validateMode has been set to '1' which puts the form into
validation mode. The form will now stay in validation mode while the user moves between form
pages until validation mode is turned off. Through setting the validateMode field to '0'.

A case where this might be particularly useful is a form where two different types of 'save' are
possible.

● Save as Draft – no validation required.

● Submit for Approval– requires validation before moving to approval stage.

In this case, saving as draft turns validation mode off as part of it's submission process, whereas
submitting for approval turns it on.

Displaying all Form Pages at Once

A common requirement of web applications is providing printing of application content. Printing
forms that span multiple pages presents problems if a server request is required to navigate
between pages.

Multi-page controllers can easily be used to print all or a select group of pages at once. The main
consideration that needs to be noted is that for multi-page forms that are not based on a common
command object like in the previous section where one or more are wrapped / nested or adapted,
the command object needs to be swapped out during page rendering. If every controller in the
group returns the same command object this is not a concern but for the same reason as for
validation, if form fields are to bind correctly against their command object the command object
must be of the correct type.

To handle swapping of the command object within a JSP page Spring Layout provides the
SwapCommandObject tag. This tag can be used inline within a JSP to swap the command object
for that returned by the named controller. More detail about this tag and its use is in the JSP tag
reference chapter.

Controller Configuration Reference
The following table details all Spring Layout settable properties for controllers that extend
AbstractPanelFormController:

Attribute Description

panelFormGroup Reference to the PanelFormGroup Spring bean this controller is to
be used with. The panelFormGroup bean holds references to all
panelForm beans that configure rules relating to validation and
layout for fields on the page.

defaultEditMode true / false. Determines whether the page should open in edit or
read mode by default if not specified in the url

defaultProperty-
EditorsAllowEmpty

True / false. If set to true will register all default property editors to
allow empty values to be seen as null and valid. Default Spring
behaviour will see a null value for an integer as a binding error.
Also registers custom editors for Calendar and
FieldAccessibleCalendar classes.

pageAccessResolver Reference to an optional PageAccessResolver used for determining
a user’s access to the current page and functions within it.

redirectFormView The name of the view (defined in views.properties or equivalent)
that redirects to the current controller. This is required so that a
redirect can be used after all form submission / binding. This
includes changing panels / tabs or any form of page refresh.

formView The name of the view used to render the current page. Used by
showForm as in core SpringMVC.

commandName Name by which to store and reference the command object.

Key: Shaded cells indicate properties important to Spring Layout but part of the core Spring MVC
framework

Controller Lifecycle
The Spring Layout controller lifecycle extends that of SimpleFormController. The following activity
diagrams shows in detail the flow of a controller for a GET request.

Figure 2: Controller flow for GET requests

The following activity diagrams shows in detail the flow of a controller for a POST request.

Figure 3: Controller flow for POST requests

Security
As touched on in the Controllers chapter, Spring layout provides a flexible security authorization
layer which is primarily based around but not limited to the Controller Command Object. This layer
of security can be combined with any authentication strategy such as Acegi Security and comes in
the form of PageAccessResolvers.

Page Access Resolvers allow security at three levels:

1. Page Level Security – allows runtime evaluation of rules written in Java to allow,
downgrade or reject the requested page.

2. Field Level Security – allows the conditional identification of fields to be rendered in read
mode for the current request.

3. Page Function Security – allows the specification of Page Functions and their associated
permissions based on the current user and context.

Page Access Resolvers
Page Access Resolvers are optionally injected into Spring Layout Controllers and called following
the resolution of the command object through formBackingObject and, for controllers with
bindOnNewForm, following binding of request parameters to the command object. The following
simplified illustration of the flow shows where in the controller lifecycle, pageAccessResolvers are
executed.

Figure 4: Page Access Resolver and Controller Lifecycle

By default Page Access Resolvers are only run during a GET request and not during a POST. For
many applications this is acceptable but it should be considered when designing a security
strategy. If pageAccessResolvers are to be run on a POST, the runOnFormSubmission property
of the Page Access Resolver should be set to 'true'.

Implementing a PageAccessResolver
An implementation of a Page Access Resolver should extend the
net.sf.springlayout.web.security.AbstractPageAccessResolver class. This class provides the
following abstract methods to be implemented by the concrete PageAccessResolver.

protected abstract AccessLevel getPageAccessLevel(
HttpServletRequest request,
Object object);

protected abstract PageFunctionStateMap getPageFunctionPermissions(
HttpServletRequest request,

Object object,
boolean editMode);

AbstractPageAccessResolver also provides an optional method that can be overridden if there is a
requirement for conditional read-only fields.

protected List defineReadOnlyFields(HttpServletRequest request, Object object)

These methods and related object types will be explained in more detail in the following sections.

Configuration
Page Access Resolvers are configured as Spring beans and injected into controllers using the
pageAccessResolver property. The following example demonstrates this:

<bean id="userPageAccessResolver"
class="net.sf.springlayout.sampleapp.web.security.UserPageAccessResolver" />

<bean id="userController" parent="abstractItrackController"
class="net.sf.springlayout.sampleapp.web.controller.UserController" >

<property name="pageAccessResolver">
<ref bean="userPageAccessResolver" />

</property>

...

</bean>

Page Level Security
The first of the two methods that must be implemented in a Page Access Resolver is responsible

for determining the page access level.

protected abstract AccessLevel getPageAccessLevel(HttpServletRequest request, Object object);

As can be seen from inspection of the method signature, this method provides the command
object and request for use in determining the access level for the current request. It would
commonly be a requirement to evaluate a user's access based on their identity but due to the
varying implementation of the user, or authentication object in different systems this has been left
out. Implementing applications should provide their own strategy for resolving the current user if it
is required at this point such as storing them in the request / session or in ThreadLocal.

An example of a simple implementation of a Page Access Resolver might look something like the
following:

protected AccessLevel getPageAccessLevel(HttpServletRequest request,
Object object)

{

 User user = (User) object;

 if (user.isNew())
 {
 return AccessLevel.EDIT_ACCESS;

 }
 else
 {

 Authentication authentication =
SecurityContextHolder.getContext().getAuthentication();

 if (authentication.getName().equals(user.getUsername())
 {
 return AccessLevel.EDIT_ACCESS;
 }
 else
 {
 return AccessLevel.READ_ACCESS;
 }
 }

}

In this example, the command object is firstly cast to it's correct type of User. If the user is a new
object then we want to allow anyone access so the Access Level returned is
AccessLevel.EDIT_MODE. Access levels are a type safe enumeration with possible values of

● Access Level.EDIT_ACCESS

● Access Level.READ_ACCESS

● Access Level.NO_ACCESS

The second part to this example checks to see if the current user is the same user as is being
opened and returns, Access Level.EDIT_ACCESS if they match and Access
Level.READ_ACCESS if they don't. The implementation for authentication in this case is Acegi
Security, so the authentication object is retrieved using the Acegi SecurityContextHolder.

Field Level Security
Spring Layout provides a concept of Modes for fields rendered using JSP pages. This enables a
single form to be used for both read only and editable views of a form. Field level security provides
the added benefit of being able to conditionally identify particular fields based on their path in
relation to the command object, as read only. This can be particularly useful if you want certain
parts of a form to be locked down from specific users or groups of users.

Say for instance you wanted to extend the previous example to allow the administrator of the
application access to edit all user's details but prevent them from changing key personal data such
as the user's first and last name.

Along with some minor modifications to the getPageAccessLevel method from the previous
example, you would need to override the following method:

protected List defineReadOnlyFields(HttpServletRequest request, Object object)

This method allows a list of Strings to be returned that represent the paths to the fields that should be
displayed as read only.

Similarly to the getPageAccessLevel method example, the defineReadOnlyFields method should evaluate the
current context based around the command object if necessary and return it's list of fields. In this case the
rules are quite simple in that it should check to see if the current user is an Administrator (by whatever role
based security is implemented) and return the read only fields if this is the case.

There would be no point evaluating this code if the page was in read mode so Spring Layout does not call the
defineReadOnlyFields method unless the page is in edit mode.

protected List defineReadOnlyFields(HttpServletRequest request, Object object)
{
 List list = new ArrayList();
 Authentication authentication = SecurityContextHolder.getContext().getAuthentication();

 if (ArrayUtils.contains(authentication.getAuthorities(),
 new GrantedAuthorityImpl(Role.ROLE_GLOBAL_ADMINISTRATOR)))
 {
 list.add("firstName");

 list.add("lastName");
 }

 return list;
}

Function Permissions
Function Permissions represent permissions a user has to functions or actions within a page such
as Save, Edit, Delete etc. Most applications have functions of some kind and many require these
functions to be selectively enabled, disabled or hidden depending on the current user and various
other factors. As with the other Page Access Resolver features, the getPageFunctionPermissions
method includes the command object and request as part of it's method signature. On top of these
it also provides as a convenience, a boolean to indicate whether the page is in edit mode or not.

protected abstract PageFunctionStateMap getPageFunctionPermissions(
HttpServletRequest request,

Object object,
boolean editMode);

A simple example of defining Page Function Permissions would be the alternate display of the
save and edit buttons depending on the page mode.

protected PageFunctionStateMap getPageFunctionPermissions(
HttpServletRequest request,
Object object,
boolean editMode)

{

 PageFunctionStateMap functionMap = new PageFunctionStateMap();

 User user = (User) object;

 if(editMode)
 {
 functionMap.put("save", PageFunctionState.ENABLED);
 }
 else
 {
 functionMap.put("edit", PageFunctionState.ENABLED);
 }

 return functionMap;
}

Obviously far more complex conditions can be implemented based around the authenticated user
and other contextual information if necessary.

PageAccessHolder
The PageAccessHolder is used to store state about the access levels for the current request. It is
used throughout SpringLayout by the Controllers, PageAccessResolvers and JSP tags to
determine how the application should behave and display.

The PageAccessHolder is evaluated and set for each request at appropriate times within the
controller lifecycle and stored in ThreadLocal using the PageAccessManager. If the
pageAccessHolder is to be referenced within application code it can be done using the static
method PageAccessManager.getPageAccessHolder().

The Page Access Holder contains various methods for querying the current access levels. It is
advisable not to set access levels directly in the pageAccessHolder unless you are completely
familiar with the lifecycle of Spring Layout. For the vast majority of cases it is more intuitive and
easier to use the methods described in previous sections to achieve security related behaviour.

It is also important to to note that the PageAccessHolder should be considered the absolute
authority on page access levels. Do not reference the url parameter directly to determine the page
access level as this will not necessarily accurately represent the current situation. It is quite
possible that although a user has requested a page for edit access, their access has been
downgraded to read access through a Page Access Resolver. Obviously using the url parameter

would be invalid in this situation.

JSP Tags
Security is integrated in some way into most of the the Spring Layout JSP form and field tags.
These tags are detailed in the JSP Tags section. There are however some convenience tags that
can be used within a page for security related concerns that are worth mentioning here.

Tag Description

<layout:ifEditMode> Use to wrap content to be displayed when the page is
in edit mode

<layout:ifReadMode> Use to wrap content to be displayed when the page is
in read mode

<layout:hasPageFunction> Use to wrap content to be displayed if the page has
the specified function

Form and Field Layout Configuration
Central to Spring Layout is the concept of Form and Field definitions. These are used to configure
rules relating to form fields for layout and validation purposes. When a Spring Layout JSP form or
field tag is rendered, it firstly looks up it's corresponding definition to determine how it should be
rendered and and how it should behave.

One of the first steps to creating a form in Spring Layout is to create a form definition with it's
corresponding field definitions. To achieve this a Spring Application Context file is created in the
“WEB-INF/layout” folder. The location of Spring Layout configuration is up to the developer
although this is a recommended location for consistency and clarity. Following is an example file
for a user form called “userFormDefinition.xml”:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
 <bean id="commentForm" class="net.sf.springlayout.web.layout.LayoutForm">
 <property name="formAction" value="userDetails.html" />

<property name="formName" value="userDetailsForm" />
<property name="controllerBeanName" value="userDetailsController" />

 <property name="fieldDefinitions">
 <map>
 <entry key="id">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="id" />
 <property name="mandatory" value="false" />
 </bean>
 </entry>
 <entry key="firstName">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="firstName />
 <property name="mandatory" value="true" />
 </bean>
 </entry>
 <entry key="lastName">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="lastName" />
 <property name="mandatory" value="true" />
 </bean>
 </entry>
 <entry key="email">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="email" />
 <property name="mandatory" value="true" />
 </bean>
 </entry>

...

 </map>
 </property>
 </bean>
</beans>

The field definitions serve as a central location for defining the field attributes including field size
and mandatory requirements including mandatory rules (covered later in this section).

One of the major benefits of the SpringLayout extensions is the generation of both front-end
Javascript validation and back-end server side validation utilising the same field definition.

Using the above as an example the properties are explained below:

LayoutForm Attributes
Property Description

id This property is used to identify the bean

class net.sf.springlayout.web.layout.LayoutForm

formAction The definition of the form action generated into the HTML form tag

<form name="commentForm" id="commentForm" action="comment.html"
method="post">

formName The definition of the form name and id generated into the HTML form tag

<form name="commentForm" id="commentForm" action="comment.html"
method="post">

controllerBeanName The id of the controller bean name defined in controller-servlet.xml

fieldDefinitions A map of field definitions used on the form see below (LayoutField Attributes)

LayoutField Attributes

Property Description

class net.sf.springlayout.web.layout.LayoutFieldDefinition

key Key to the map of field definitions the actual field name

fieldKey Unique field name, the same value as the key property

mandatory Simple true/false attribute to indicate if field is mandatory or not

minLength The minimum length of the field

maxLength The maximum length of the field

mandatoryConditions Set of mandatory conditions for the field

mandatoryCondition An individual expression based mandatory condition

mandatoryListType and/or the type of condition, the conditions are “anded” or “ored” together
(default = “and”)

validationRules Validation rules to identify incorrect format of input data.

dependantValidationFieldKeys Errors can be placed on other labels in the UI if required, Errors are
mapped to all keys in this list.

masterFieldId Id of the field on the page that the Javascript will be attached too

Default Field Attribute
To ease the field configuration in the layout xml file it is possible to set up a default field attribute as
follows:

<entry key="DEFAULT_FIELD">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="DEFAULT_FIELD" />
 <property name="mandatory" value="false" />
 </bean>
</entry>

This has the effect of being used by any field that is not defined in the XML explicitly, and giving it
the properties specified in this default entry.

Panel Forms / Form Groups
SpringLayout provides the ability to support a group of form pages that work together as a 'panel
group', allowing for multiple forms to be used in cross form validation and for the creation of
'tabbed' or 'wizard' style step-by-step forms.

Configuring a group of forms that work together in a form group requires an additional bean
definition commonly maintained in a special XML file for organisational clarity, namely
“layoutPanelFormGroups.xml”. This bean is configured as follows:

<bean id="userFormGroup" class="net.sf.springlayout.web.layout.LayoutPanelFormGroup">
<property name="panelForms">

<list>
<ref bean="userDetailsPanelForm" />
<ref bean="loginDetailsPanelForm" />

</list>
</property>

</bean>

In this example a LayoutPanelFormGroup has been set up with user details and login details
panels each of which has its own panel form. Each panel form has similar configuration to the
standard layout form with a few additions. Following is an excerpt of the “userDetailsPanelForm”
properties:

<bean id="userDetailsPanelForm" class="net.sf.springlayout.web.layout.LayoutPanelForm">

<property name="panelLabel" value="User Details" />
<property name="index" value="0" />
<property name="formAction" value="userDetails.html" />
<property name="formName" value="userDetailsForm" />
<property name="controllerBeanName" value="userDetailsController" />
<property name="redirectFormViewName" value="user_userDetails-redirect" />
<property name="panelFormTabStateManager">

<bean class="net.sf.springlayout.web.layout.UserDetailsPanelTabStateManager" />
</property>
<property name="fieldDefinitions">
...
</property>

</bean>

LayoutPanelForm Attributes

Property Description

id This property is used to identify the bean

class net.sf.springlayout.web.layout.LayoutPanelForm

panelLabel A text label that can be used on the UI as for example a text label on the tab for the
panel that is used for navigation

index Order in the list of the panel group 0 = first panel

formAction The definition of the form action generated into the HTML form tag

formName The definition of the form name and id generated into the HTML form tag

controllerBeanName The id of the controller bean name defined in controller-servlet.xml

redirectFormView The name of the view that the form redirects to after a post, this ensures that if a
client refreshes the browser after a post, information is not posted a second time

panelFormTabStateMan
ager

This allows for a manager to be used to control the edit state of the specific panel
form

fieldDefinitions A map of field definitions used on the form

Validation Configuration
Validation is one of the key aspects of the SpringLayout extensions. Out of the box, Spring Layout
provides a rich declarative validation framework for common validation requirements. It provides
the ability to easily write custom validation rules for specific validation requirements. Validation is
incorporated into the tag library to visually display errors to the UI as well as generate Javascript
for validation that is executed on the browser. It is also incorporated into the Controller Framework
to validate on the server side to ensure that only valid data is sent through to the service layer for
further processing.

The correct configuration carried out in the field definitions is all that is needed to achieve this two
level validation, the configuration options available for validation offer a great deal of flexibility and
power.

This section goes through the configuration options and shows some examples of some common
validation configurations.

Simple Mandatory Field Validation
In it's most basic form, mandatory fields can be configured without a condition. Often a field may
be mandatory always so an easy configuration is provided. The following example shows a basic
mandatory field configuration where the firstName field is always mandatory:

<entry key="firstName">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="firstName" />
 <property name="mandatory" value=”true”>
 </bean>
</entry>

The effect of this simple configuration is as follows:

1. The field and it's label are rendered as mandatory using appropriate CSS classes

2. On submission of the form (in validation mode), the field is validated as mandatory. If the
field fails mandatory field validation an error is bound to the field in the errors object. Note
that if mandatory field validation fails, there are no further validation rules executed against
the field. Validation rules for other fields are still evaluated.

3. The showForm method is called in AbstractBaseFormController returning the form to the
user.

4. The form renders with appropriate CSS to highlight fields with errors.

**Note: Spring Layout provides a default look and feel which can be overridden for individual
applications.

Conditional Mandatory Field Validation
The mandatoryCondition property allows for the definition of a single condition, to determine if a
field should be made mandatory or not.

<entry key="email">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="email" />
 <property name="mandatoryCondition">
 <bean class="net.sf.springlayout.web.validator.condition.PathBasedCondition">
 <property name="operator" value="==" />
 <property name="path" value="receiveEmail" />
 <property name="value" value="true" />
 </bean>
 </property>
 </bean>
</entry>

Referring to the above LayoutFieldDefinition the “email” field will be made mandatory if the
“receiveEmail” has a value of “true”. For depended validation to work in this example both of these
fields must exist on the current form page. It is also possible to validate dependencies across form
pages, the details of which will be covered later.

Validating Against Multiple Mandatory Conditions

The mandatoryConditions property allows for the definition of a list of conditions to determine if a
field should be mandatory or not. Multiple conditions can be executed using the AND or OR

Figure 5: Example of basic form error highlighting

operator. With AND being the default it is not necessary to define this for AND conditions. The
property mandatoryListType must be used if the conditions are to be evaluated together using OR.

<entry key="email">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="email" />
 <property name="mandatoryListType" value="OR" />
 <property name="mandatoryConditions">
 <list>
 <bean class="net.sf.springlayout.web.validator.condition.PathBasedCondition">
 <property name="operator" value="==" />
 <property name="path" value="subscribeToTechMailList" />
 <property name="value" value="true" />
 </bean>
 <bean class="net.sf.springlayout.web.validator.condition.PathBasedCondition">
 <property name="operator" value="==" />
 <property name="path" value="subscribeToBusinesMailList" />
 <property name="value" value="true" />
 </bean>
 </list>
 </property>
 </bean>
</entry>

Referring to the above LayoutFieldDefinition the “email” field will be made mandatory if the user
has elected to subscribe to the technical OR business mailing lists.

Cross Panel Validation Dependencies

The onThisForm property defaults to true and indicates that the field identified in the path property
is on the current form, setting this property to false indicates that the validation is across panels /
form pages.

<entry key="email">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="email" />
 <property name="mandatoryCondition">
 <bean class="net.sf.springlayout.web.validator.condition.PathBasedCondition">
 <property name="operator" value="==" />
 <property name="path" value="receiveEmail" />
 <property name="value" value="true" />

 <property name="onThisForm" value="true" />
 </bean>
 <bean class="net.sf.springlayout.web.validator.condition.PathBasedCondition">
 <property name="operator" value="<" />
 <property name="path" value="age" />
 <property name="value" value="100" />

 <property name="onThisForm" value="false" />
 </bean>
 </property>
 </bean>
</entry>

Referring to the above LayoutFieldDefinition the “email” field is mandatory based on the
“receiveEmail” field being equal to “true” and the user's age being less than 100. We figure
anyone older than 100 can be excused for not having an email address and accidently requesting
to receive email.

Raising Errors on Alternate Fields

Errors in Spring are lodged against the errors object and can be either global or bound to a specific
field or path of the command object. There are times when it is desirable to raise errors against a

field other than the field with the error such as when a single label is used for multiple fields and
any of those fields need to show errors in the label for those fields.

<entry key="subType">
 <bean class="net.sf.springlayout.web.layout.LayoutFieldDefinition">
 <property name="fieldKey" value="subType" />
 <property name="mandatoryConditions">
 <list>
 <bean class="net.sf.springlayout.web.validator.condition.PathBasedCondition">
 <property name="operator" value="!=" />
 <property name="path" value="type" />
 <property name="value" value="10" />
 </bean>
 <bean class="net.sf.springlayout.web.validator.condition.PathBasedCondition">
 <property name="operator" value="!=" />
 <property name="path" value="identified" />
 <property name="value" value="" />
 </bean>
 </list>
 </property>
 <property name="dependentValidationFieldKeys">
 <list>
 <value>type</value>
 </list>
 </property>
 </bean>
</entry>

Referring to the above LayoutFieldDefinition the “subType” field is mandatory based on the “type”
field not being equal (!=) to 10 and the “identified” field not being an empty string (“”). When the
validation error occurs put the error onto the “type” field as subtype does not have a label on the
UI.

PathBasedCondition attributes

Property Description

class net.sf.springlayout.web.validator.condition.PathBasedCondition

operator Comparison operator “==”, “!=”, “<”, “<=”, “>”, “>=”

Equals, Not Equals, Less Than, Less Than and Equals, Greater Than, Greater
Than and Equals.

path Path to the field being evaluated for the condition

value The value the field is checked against using the defined operator

onThisForm Specifies if the path field being referenced is on this form/panel – default is 'true'

Validation Rules

Spring Layout comes with several validation rules for common requirements. It is envisaged that
this set will grow with time and contributions. The validation rules currently available include:

● Email Validator

● Range Validator (Number / Date) ??

● TBA

Writing Custom Validation Rules

Spring Layout makes it easy to write custom validation rules and provides the framework for
implementing both Java and Javascript validation in the one place. Once the validation rule is
written and implemented against a field definition, Spring Layout takes care of executing the
validation rules in the front and back end at the appropriate times.

The easiest way to demonstrate a custom validation rule is to look at an existing one. To start with
a validation rule must implement the ValidationRule interface.

Figure 6: Validation Rule Interface

JSP Tags

The JSP Tag library in Spring Layout, offers a rich set of functional control tags, mode or status
tags, security tags, validation tags and configuration tags to ease the development process and
help quickly layout a form. The tags tightly integrate into the rest of the library as well as the Spring
Framework itself to provide a rapid forms development platform.

The Tags provided by Spring Layout can be broken into the following types:

Form and Field Tags
Form and Field tags facilitate the building of html forms and integrate both validation and security
functionality. As much as possible, they closely resemble their html tag equivalents and allow the
pass through of all regular html attributes.

Field Tags
Alongside the tags used for rendering html form elements, Spring Layout also provides a field label
tag that is bound to it's associated field. Besides the fact that it encourages correct use of html for
forms creation, it also enables various front end behaviours such as highlighting of field labels on
error and disabling of field labels when a field is disabled. There are various form behaviours such
as this that can be picked up 'for free' simply by using the appropriate Javascript functions in place
of direct DOM manipulation. This is detailed in the Javascript Chapter.

To illustrate some basic front end behaviour, the following two screen shots show a form after a
submission that failed validation due to a mandatory field not being filled in. The first screen shot
shows the highlighting of the “Last Name” field due to it failing validation. Notice change in the
mandatory field image as well. This is all achieved through CSS classes applied to each element
so is completely customisable on a per application basis.

The second screen shot shows the result of the user filling in the “Last Name” field and leaving the
field, triggering the onblur field event. No submission of the form was required for this as it is taken
care of in the front end.

Illustration 2: Demonstrates highlighting of form errors after failed submission

It is important to highlight that this type of front-end behaviour is not unique to mandatory fields. All
validation rules provide both front and back-end validation. It is also possible for custom validation
rules to achieve the same level of front-end behaviour.

The code snippet for the above example looks as follows:

...

<h2>
<spring:message code="textLabel.userContactDetails.heading" />

</h2>
<table class="formTable" summary="form layout table">

<tr>
<th>

<layout:label path="user.firstName" />
</th>
<td>

<layout:input path="user.firstName" />
</td>

</tr>
<tr>

<th>
<layout:label path="user.lastName" />

</th>
<td>

<layout:input path="user.lastName" />
</td>

</tr>
<tr>

<th>
<layout:label path="user.organisation" />

</th>
<td>

<layout:select path="user.organisation">
<layout:options items="${organisationList}" label="title"

value="id"
defaultLabelKey="textLabel.selectOption" defaultValue="" />

</layout:select>
</td>

</tr>
</table>

...

Those using the new Spring 2.0 tags or who have used Struts tags in the past would be familiar
with style used for the Spring Layout tags.

Note: A full reference guide detailing all the attributes of the Spring Layout Tags can be found in
the TagLibDoc documentation – see http://springlayout.sourceforge.net/tlddoc/index.html

Illustration 3: Demonstrates the result of validation errors being corrected

Handling Null Values in Nested Paths

Anyone familiar with Spring MVC will likely have encountered the
NullValueInNestedPathException. This exception is thrown when BeanWrapper tries to traverse a
path that has a null value somewhere in the path except for the last position. For example if the
path user.address.suburb had a null value at suburb, BeanWrapper would safely return null. If
however the address object in this graph was null, BeanWrapper would throw a
NullValueInNestedPathException as it could not get past address to suburb.

Without justifying the reasons for this behaviour, this is a source of frustration for some users,
especially when it comes to rendering values through Spring's field tags. The approach chosen to
get around this problem in Spring Layout is to catch this exception and render the field as a
disabled / read only field. This has two benefits. Firstly, it renders the page without error, and
secondly it prevents any fields from being posted with the form data thus preventing the exception
from occurring on binding to the model when submitted. If the field should be editable, then the
solution, as always is to instantiate blank objects for binding against in formBackingObject.

Form Tags
Field tags must be wrapped in one of two types of form tag.

● <layout:form>

● <layout:multiPanelForm>

The form tags are mainly responsible for binding the form with it's appropriate Form Definition and
fields / validation rules. In it's simplest use, the <layout:form> tag provides a singles attribute
which identifies the name of the Spring Bean for the form Definition.

The more complex of the two form tags, the <layout:multiPanelForm> requires a little more
configuration due to the added behaviour that it is responsible for.

Attribute Description

panelFormGroupBeanName Identifies the name of the Spring Bean configured for this Panel Form
Group

currentPanelBeanName Identifies the Spring Bean configured for this page / panel of the panel
form group.

panelTabRendererBeanName Identifies the Spring Bean configured for rendering the panel group tabs
for this form group (see below).

panelFooterRendererBeanName Identifies the Spring Bean configured for rendering the footer for this form
group (see below).

Panel Tab & Footer Renderers

Multi Panel Forms require navigation to switch between form panels (pages). The MultiPanelForm
Tag provides the ability to inject instances of the default panel tab renderer or a custom renderer
for added flexibility.

The simplest method is to inject either or both of the default renderers which provide a tabbed style
header for the form and a wizard (next / back) styled footer.

The tag in the JSP would look similar to the following:

<layout:multiPanelForm panelFormGroupBeanName="userPanelFormGroup"
 currentPanelBeanName="userPanelForm"
 panelTabRendererBeanName="defaultPanelTabRenderer"
 panelFooterRendererBeanName="defaultPanelFooterRenderer">

The following default panel tab renderer beans would also be required. A good place for these to
exist is within the same application context files that the panelFormGroup beans are in.

<bean name="defaultPanelTabRenderer"
class="net.sf.springlayout.web.layout.taglib.renderer.DefaultPanelTabRenderer" />

<bean name="defaultPanelFooterRenderer"
class="net.sf.springlayout.web.layout.taglib.renderer.DefaultPanelFooterRenderer" />

<<Add Screen Shots Here>>

Security Tags
The Security tags in Spring Layout provide simple conditional JSP processing based on the current
user's access. This enables the hiding of certain parts of a page if a user does not have a
particular page function or the page is in read or edit mode. These tags include:

● <layout:hasPageFunction>

● <layout:ifEditMode>

● <layout:ifReadMode>

Other Tags
Some other tags provided for different purposes include:

● <layout:swapCommandObject> - Used for switching between command objects returned by
different controllers if multiple pages of a multiPanelForm is being displayed at once.

●

User Interface Behaviour
Describe things like using:

● setFieldValue to track changes in the 'commandDirty' field

● How validation works on the client side – registering events etc.

●

Overriding the Default Look and Feel
Spring Layout comes with a

Javascript Reference
Point to JS Docs if we can generate them

Detail all dependencies / current versions etc.

How to setup the layoutResources Servlet

How to set up so JS dependencies can be overridden

	Introduction
	Overview
	Architecture
	Getting Started
	Configuring Layout Resources
	Using the LayoutResources servlet
	Managing Layout Resources Manually
	Referencing Layout Resources in JSPs or HTML files
	Displaying Loading Message

	Spring Layout Controllers
	Single Page Forms
	AbstractBaseFormController

	Method delegation
	Convenience Javascript Method for method delegation
	Editing the Command Object before binding
	Default Property Editor Registration
	Localised Messages
	Saving Messages for Display
	Messages and Redirects

	Page Modes
	Page Access Resolvers
	Specifying Read Only Fields in the Controlle
	Controller Configuration Reference
	Multi Page Forms
	MultiPanelFormController
	Multi-page Form State Management
	Form Page Navigation
	Validation
	Validation Mode

	Displaying all Form Pages at Once

	Controller Configuration Reference
	Controller Lifecycle

	Security
	Page Access Resolvers
	Implementing a PageAccessResolver
	Configuration
	Page Level Security
	Field Level Security
	Function Permissions
	PageAccessHolder

	JSP Tags

	Form and Field Layout Configuration
	LayoutForm Attributes
	LayoutField Attributes
	Default Field Attribute
	Panel Forms / Form Groups
	LayoutPanelForm Attributes

	Validation Configuration
	Simple Mandatory Field Validation
	Conditional Mandatory Field Validation
	Validating Against Multiple Mandatory Conditions
	Cross Panel Validation Dependencies
	Raising Errors on Alternate Fields
	PathBasedCondition attributes
	Validation Rules
	Writing Custom Validation Rules

	JSP Tags
	Form and Field Tags
	Field Tags
	Handling Null Values in Nested Paths

	Form Tags
	Panel Tab & Footer Renderers

	Security Tags
	Other Tags

	User Interface Behaviour
	Overriding the Default Look and Feel
	Javascript Reference

